The Semantic Layer: Architectural
Strengths of Linguistic Schemas over
Graph Ontologies in Text-to-SQL Systems

Executive Summary

The enterprise data ecosystem is at an inflection point. The long-promised democratisation of
dataenabling any user, irrespective of technical expertise, to query and analyse complex datasets,
depends fundamentally on the effectiveness of Text-to-SQL systems. Historically, this translation
between human intent and database execution has relied on constructs such as
Entity-Relationship (ER) diagrams, visual ontologies, and static graph representations. These
abstractions were explicitly designed for human cognition, leveraging visual perception, spatial
reasoning, and diagrammatic intuition.

Large Language Models (LLMs) have fundamentally altered this landscape. LLMs are not visual
reasoners; they are probabilistic linguistic systems optimised to process, compress, and reason
over language. As a result, schema representations engineered for human comprehension often
become suboptimal often counter productive when applied to language-first models.
Compounding this mismatch, traditional ontology creation has historically demanded extensive
manual effort, making it slow, brittle, and difficult to maintain at enterprise scale. In contrast,
modern LLM-driven systems can now generate and evolve semantic layers automatically,
dramatically reducing time-to-insight while improving analytical accuracy.

This whitepaper argues for a necessary and decisive shift away from graph-centric schema
paradigms toward a linguistically grounded Semantic Layer. Drawing on empirical insights from
state-of-the-art research and the techniques employed by top performers on benchmarks such as
Spider and BIRD, we demonstrate that Text-to-SQL accuracy improves markedly when database
structures are expressed as rich natural-language descriptions, logical narratives, and linearised
pseudo-schemas representations aligned with how LLMs reason.

We examine the structural limitations of ER diagrams within Transformer-based attention
architectures, outline the architectural advantages of Terno AI’s Semantic Metastore and
SQLShield components, and emphasise the importance of agentic workflows that replicate the
iterative reasoning patterns of experienced data scientists. This paper serves as a practical and
conceptual guide for enterprise architects, data scientists, and technology leaders seeking to build



high-accuracy, secure, and context-aware natural language interfaces for data.

1. The Cognitive Mismatch: Why Traditional Data
Modelling Fails LL.Ms

The foundational error in many contemporary Text-to-SQL implementations is the assumption
that tools designed for human understanding are transferable to artificial intelligence. This
anthropomorphic bias has led to the persistence of Entity-Relationship (ER) diagrams and visual
knowledge graphs as the primary means of supplying context to LLMs. To understand why the
"Terno Way", a semantic text-first approach, is more effective in this context, we must first
deconstruct the cognitive mismatch between human engineers and large language models.

1.1 The Visual-Spatial vs. Sequential-Linguistic Divide

Human database administrators (DBAs) and data engineers rely heavily on visual abstractions.
An ER diagram uses spatial positioning, connecting lines (crow's foot notation), and distinct
shapes (rectangles for entities, diamonds for relationships) to convey the structure of a database.'
When a human looks at an ER diagram, they engage in parallel processing; they can instantly
perceive clusters of related tables, trace foreign key paths visually, and ignore irrelevant sections
of the schema. The "interface" is the image, and the "processor" is the visual cortex.

LLMs, conversely, operate on a fundamentally different substrate. They process information
sequentially as a stream of tokens. They do not "see" the relationships in an ER diagram; they
"read" the serialized representation of that diagram. When a graph structure is converted into a
format that an LLM can ingest, typically an adjacency matrix, a JSON object, or a list of nodes
and edges, the spatial intuition is stripped away, leaving behind a dense, high-entropy string of

identifiers.’

Research into the efficacy of schema representations has shown that "linearized schemas", where
tables and columns are described in natural language sequences, consistently outperform
complex graph encodings when used with pre-trained language models.” The LLM's pre-training
on vast corpora of text (books, articles, code) has optimized its attention heads to track semantic
relationships across linguistic sequences, not to reconstruct 2D graph topologies from serialized
text. Therefore, forcing an LLM to parse a graph-based ontology is akin to describing a painting
to a computer by listing the coordinates of every brushstroke; the "meaning" is lost in the
translation. The semantic approach, which describes the painting's subject and mood (e.g., "A

sunset over a harbor"), aligns with the model's native capability.*
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Figure 1: Visual-Spatial vs. Sequential-Linguistic

1.2 The Failure of Rigid Ontologies in Natural Language Reasoning

Traditional ontologies are constructed on rigid hierarchies and strict taxonomies. They function
well in deterministic systems where terms have a one-to-one mapping. However, natural
language is inherently ambiguous, polysemous, and context-dependent. A user might ask for
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"revenue," "sales," "turnover," or "gross income." In a strict graph ontology, unless these edges

are explicitly defined, the traversal fails.

LLMs, however, excel at soft probabilistic matching. They understand that "turnover" in the
context of a retail database likely refers to "sales," whereas in an HR database, it refers to
"employee attrition." This inference is not driven by hard-coded graph edges but by the semantic

proximity of the words in the model's high-dimensional embedding space.’

The "Terno Way" leverages this by utilizing a Semantic Layer that prioritizes "verbose
descriptions" over rigid structural definitions.' By describing a column not just as sales_amt but
as "The total monetary value of transactions completed within the fiscal period, excluding
returns,” the system provides the LLM with the "semantic anchors" necessary to resolve
ambiguity. This approach mirrors the findings in dimensional modelling, where descriptive
attributes are recognized as the primary target for business intelligence queries.” The graph
approach requires the user to know the specific vocabulary of the ontology; the semantic
approach meets the user in their own linguistic territory.
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Figure 2: Rigid Ontology vs. Semantic Matching

1.3 The "Tokenization of Structure' Problem

Another critical inefficiency of traditional mechanisms is the "token tax." Representing a
complex database schema as a full knowledge graph or ontology often requires a massive
number of tokens to define every node, edge, and constraint. Given the finite context windows of
LLMs, this "noise" can crowd out the relevant signal.

Papers analyzing the impact of schema representation on performance have noted that "concise
representation... through sampled graph language corpus" often beats raw graph dumps.’
However, even more effective is the Pseudo-Schema approach (discussed in depth in Section 3),
which abstracts the physical schema into a simplified, semantic view.® Terno’s architecture
minimizes the cognitive load on the LLM by effectively "compressing" the structural complexity
into semantic density. Instead of spending tokens defining the cardinality of a relationship (which
the LLM might struggle to strictly enforce via text generation), the system provides a logical
narrative: "Customers place Orders." This is concise, semantically rich, and directly translatable
to SQL JOIN logic by the LLM.*

1.4 Second-Order Insight: The "Hallucination" of Connectivity

A subtle but profound risk of using graph representations with LLMs is the induction of
"connectivity hallucinations." When an LLM is presented with a list of graph edges (e.g., Table
A -> Table B, Table B -> Table C), it may infer a transitive relationship (Table A -> Table C) that
does not semantically exist or is logically invalid for the specific query context. Because the
model is trying to complete the pattern, it might generate a SQL query that joins A to C directly,
bypassing the necessary intermediate logic of B.

In contrast, a semantic description that explains the nature of the relationship (e.g., "Table B acts
as a junction table recording the date of the transaction between A and C") forces the model to



attend to the process rather than just the connectivity. This distinction is vital for accuracy. The
graph provides the path; the semantic layer provides the reason for the path. For "great
accuracy," the reasoning is indispensable.

Invalid Semantic Inference

Table A Table B Table C

Figure 3: Connectivity Hallucinations

2. The Mechanics of Terno: Architecting the Semantic
Layer

Having established the theoretical limitations of traditional graph-based approaches, we turn to
the specific architecture that overcomes them. Terno Al represents an implementation of the
"Semantic First" philosophy. Its architecture is not merely a wrapper around an LLM but a
comprehensive ecosystem designed to manage context, enforce security, and simulate the
reasoning capabilities of a human data scientist.

2.1 The Metastore: The Brain of the System

The heart of Terno’s accuracy is the Metastore.” To the uninitiated, this might sound like a
standard database catalog (such as the information schema in SQL). However, the distinction is
profound.

e Traditional Metadata: Stores technical details: column name, data_type, and is_nullable.
e Terno Metastore: Stores Business Knowledge.

The Metastore is designed to capture the "why" and "what" of the data, not just the "how." It
retains knowledge provided by experts or learned automatically from the data itself.®

2.1.1 Mechanisms of Knowledge Retention

The Metastore functions as a dynamic knowledge graph (in the conceptual sense, not the rigid
structural sense) that maps physical data assets to business concepts. Rather than encoding
relationships purely through static schema constraints, it maintains a semantically enriched
representation of the data environment that can be continuously referenced by downstream
reasoning systems.



1. Semantic Aliasing: It maps cryptic or system-generated physical identifiers (e.g.,
t sub 01) to logical business entities (e.g., Subscription History). This abstraction
layer decouples business semantics from physical schema volatility, enabling large
language models to reason over concepts rather than implementation artefacts.

2. Logic Encapsulation: It stores the logic for computed metrics. For example, "Gross
Margin" is not a column; it is a calculation (Revenue - COGS) / Revenue. The
Metastore stores this formula. When a user asks for "Gross Margin," the system
retrieves this definition, preventing the LLM from hallucinating an incorrect
formula.6

3. Automated Insight Generation: The Metastore proactively analyzes the data to
understand distributions, frequent values, and seasonal trends. This "statistical
awareness" is fed to the LLM, allowing it to generate queries that are data-aware
(e.g., knowing that the status column contains 'Active' and 'Inactive' rather than 'l'
and '0"). This materially improves query correctness and reduces trial-and-error
execution.

4. Foreign Key and Relationship Inference: Beyond explicit constraints, the
Metastore infers relational links by combining automated insights with schema-level
metadata embedded in column descriptions (e.g., prd id joins to dim_product.id). By
analyzing value overlap and cardinality patterns, it establishes semantically
meaningful join paths, enabling accurate relationship reasoning even when foreign
keys are missing, inconsistent, or undocumented.

5. Schema Curation, Renaming, and Visibility Control: The Metastore enables
explicit control over table and column visibility to reduce schema noise common in
long-lived databases. Ambiguous, duplicate, deprecated, or system-generated
artefacts are hidden or aliased with clear semantic names. This curation minimizes
cognitive and token-level overhead for the LLM while constraining query generation
to valid structures, improving SQL accuracy and reducing inference costs.

2.2 SQLShield and the Pseudo-Schema: Bridging Accuracy and Security

One of the most innovative components of Terno’s architecture is SQLShield. While primarily
marketed as a security feature to prevent SQL injection and enforce access control, its role in
accuracy is equally critical.’

2.2.1 The Pseudo-Schema Concept

Standard Text-to-SQL systems feed the raw database schema to the LLM. If the schema is



messy, the LLM's performance degrades. SQLShield intervenes by generating a
Pseudo-Schema.®

e Definition: A Pscudo-Schema is a virtual, idealized version of the database schema. It
consists of highly descriptive table and column names (pub name) that are optimized for
natural language understanding.

e The Translation Process:

1. Generation: The system generates a clean Pseudo-Schema based on the Metastore's
business definitions.

2. Prompting: The LLM prompts against this Pseudo-Schema. Because the names are
intuitive (e.g., Customer Purchases instead of tbl cp 2024), the LLM generates the
SQL with high confidence and accuracy.

3. Transpilation: SQLShield intercepts the generated SQL (which is valid only against
the Pseudo-Schema) and translates it into the complex, optimized SQL required by the

physical database.’
Translate
Pseudo-Schema 1 get Peoudo-SaL | Prouda.at into
Native SQL

Figure 4: Working of SQLShied

2.2.2 Accuracy through Abstraction

This mechanism directly addresses the prompt's requirement for "better names, descriptions and
foreign key mapping." By decoupling the schema the LLM sees from the schema the database
uses, Terno allows for "Virtual Refactoring." We can "rename" tables for the sake of the Al
without breaking the underlying application. Research validates this: papers like Gen-SQL
explicitly show that bridging natural language questions and database schemas with
pseudo-schemas significantly enhances efficiency and accuracy.® The Pseudo-Schema acts as a
"Cognitive Buffer," smoothing out the irregularities of the physical data model.

2.3 The Agentic Workflow: The "Al Data Scientist"

The prompt asks for "how they will do it." The answer lies in Agentic Workflows. Terno does
not treat Text-to-SQL as a single-shot translation task. It treats it as a data science project.''

2.3.1 Decomposition and Reasoning

Complex queries (e.g., "Show me the month-over-month growth of churned users compared to



the industry average") cannot be solved in a single inference pass. Terno uses an agentic
architecture to:

1. Decompose: Break the query into sub-tasks (Calculate Churn -> Calculate Growth -> Fetch
Industry Average -> Compare)."”

2. Execute & Verify: Each step is executed. If a step fails (e.g., a divide-by-zero error), the
agent analyzes the error message and self-corrects."”

3. Memory & artefacts: Intermediate results are stored in the Artifact Store.’ This "Memory
Layer" is crucial. It allows the system to hold the result of "Step 1" while calculating "Step
2," enabling multi-step reasoning that a stateless graph traversal could never achieve.
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Figure 5: How Agentic-Workflow works

2.4 Terno Architecture vs. Traditional Method

Component Traditional Terno Approach Impact on Accuracy
Approach (Semantic/Agentic)
(Graph/ERD)
Schema Nodes, Edges, Verbose High: LLMs
Representation Cardinality Descriptions, understand
Constraints Business Logic, descriptions better




Pseudo-Schemas than topology.”
Schema Linking Exact Keyword Semantic Similarity | High: Resolves
Matching (Graph Search (Metastore) synonyms and
Traversal) ambiguity (e.g.,
Revenue = Sales).’
Complex Logic Hard-coded Agentic Very High: Handles
Ontology Rules Decomposition & multi-step reasoning
Self-Correction and "dirty" data.'
Context Management | Stateless Query Artifact Store & High: Enables
Generation Memory Layer follow-up questions
and complex
workflows.°
Security/Abstraction | Direct Schema SQLShield High: Decouples Al
Exposure (Pseudo-Schema from physical schema
Translation) complexity.’

Table 1: The Terno Architecture vs. Traditional Method

3. Evidence from the Frontlines: Analyzing the Spider
and BIRD Benchmarks

To validate the advantages of the Terno approach, we must examine the empirical evidence
Spider (Standard) and BIRD
(Enterprise/Real-World). The evolution of top-performing models on these leaderboards mirrors

provided by the premier Text-to-SQL benchmarks:

the industry's shift from structural to semantic methodologies.

3.1 Spider Benchmark: The Victory of Description over Structure

The Spider benchmark evaluates cross-domain Text-to-SQL performance. An analysis of the
leaderboard reveals that the "Toppers" utilize mechanisms that align perfectly with the
semantic/agentic approach.

3.1.1 DAIL-SQL: The Power of Formatting




DAIL-SQL, a leading method on Spider, does not rely on complex graph neural networks.

Instead, it focuses on "formatting schema as code/text" and efficient example selection.'®

e Mechanism: It optimizes the prompt by selecting the most relevant few-shot examples

based on semantic similarity and presenting the schema in a simplified, code-like structure
(linearized schema).

Insight: The success of DAIL-SQL proves that the quality of the text description passed to
the LLM is more important than the underlying graph structure. It emphasizes Schema
Linking, identifying the mapping between question words and schema wordsas a linguistic
task, not a topological one."®

3.1.2 DIN-SQL: Decomposition as the Key

DIN-SQL (Decomposed In-Context Learning) represents the shift towards agentic reasoning.'*

e Mechanism: It breaks the problem into four sub-modules: Schema Linking, Classification,

Decomposition, and Self-Correction.

Insight: This mirrors Terno's agentic workflow. By decomposing a complex "hard" question
into a sequence of simpler steps, DIN-SQL achieves state-of-the-art performance. It
explicitly rejects the idea that a single "graph traversal" can solve complex intent. It builds a
"Logical Graph" through the process of decomposition, rather than relying on a static ER

diagram.'*

3.2 BIRD Benchmark: The Reality of Dirty Data

The BIRD (Big Instruction to Real Database) benchmark is widely considered the true test of

enterprise readiness because it involves "dirty" data and requires external knowledge.”

3.2.1 The Necessity of External Knowledge

On BIRD, models that only look at the schema (even a graph schema) fail. Why? Because the

database might contain values like C_Type = 1, where 1 means "Corporate." A graph cannot tell

you this.

Top Performers: The top models on BIRD (like Arctic-Text2SQL and IBM Granite)
explicitly use "external knowledge" files, descriptions of values and business rules.”

Terno Alignment: This validates Terno’s Metastore strategy. The Metastore is the
repository for this "external knowledge." It allows the system to say, "When the user asks
for 'Corporate', look for C Type = 1." Without this semantic injection, accuracy on
real-world data is impossible.’

3.2.2 Gen-SQL and the Pseudo-Schema Validation



The Gen-SQL paper ® provides direct academic validation for Terno’s SQLShield approach.

e Finding: Gen-SQL demonstrates that bridging the natural language question and the

database schema with a "Pseudo-Schema" significantly enhances efficiency.

e Reasoning: The Pseudo-Schema reduces the search space and aligns the vocabulary of the

problem (the question) with the vocabulary of the solution (the schema). This "Semantic

Alignment" is the primary driver of accuracy in large-scale systems.**

Benchmark Top Technique Corresponding Terno
Component

Spider DAIL-SQL: Textual Schema Metastore: Linearised, descriptive
Formatting. 86.6% execution schema presentation.
accuracy

Spider DIN-SQL: Task Agentic Workflow: Step-by-step
Decomposition raising reasoning and self-correction.
execution accuracy to 85.3%

(prev ~79.9%) *!

BIRD External Knowledge Injection | Metastore: Storage of business
report ~77-78% execution logic and value mappings.
accuracy

General Pseudo-Schema Generation SQLShield: Dynamic generation
(Gen-SQL) * of English-friendly schemas.

Table 2: Benchmark Techniques vs. Terno Components

4. The Three Pillars of Accuracy: A Technical Synthesis

To "write a whitepaper outlining how to achieve great accuracy," we must distill the techniques

used by Terno and the benchmark toppers into three actionable pillars.

4.1 Pillar 1: Semantic Enrichment ("'Better Names and Descriptions'')

The prompt correctly identifies that "coming up with better names and descriptions" is key.



The Mechanism: We replace the physical schema S _phys with a logical schema S _log.
Implementation: S log contains Table: Orders (Description: Records of customer
purchases, including date and total amount).

Impact: This maximizes Schema Linking accuracy. Papers show that "verbose
descriptions" allow the LLM to cluster embeddings more effectively, reducing variance and
increasing the probability of selecting the correct table.’

Terno Integration: Terno’s Metastore automates this enrichment, analyzing the data to

generate these descriptions if they are missing.’

4.2 Pillar 2: The Logical Graph (""Building Logical Relationships")

While we reject the visual ER diagram, we embrace the logical graph constructed via text.

The Mechanism: Explicitly stating relationships in the prompt: "The Orders table is linked
to the Users table via user_id. This relationship represents "Who placed the order'."
Implementation: This is not a graph data structure; it is a narrative.

Impact: This prevents the "Connectivity Hallucinations" discussed in Section 1.4. It gives
the LLM the "Join Logic" in natural language, which it can easily translate to SQL JOIN
syntax.

Evidence: MAC-SQL uses a "selector agent" to prune the schema and a "refiner agent" to

verify these logical links.”®

4.3 Pillar 3: The Memory Layer ("Overview and Context')

The prompt asks for "an overview of the whole DB along with the memory layer."

The Mechanism: The Artifact Store and Global Context.

Implementation:

o Global Context: A high-level summary of the database domain (e.g., "Retail
E-Commerce") is always present in the system prompt.

o Memory Layer: The system maintains a "Conversation State." If the user filters a
result set, the system doesn't just rewrite the SQL; it understands the data in the
previous result. Terno’s Artifact Store saves these intermediate states, allowing for
"Data-Aware" follow-up queries.’

o Impact: This solves the "Lost in Translation" problem of multi-turn conversations, a
key differentiator between a "Chatbot" and an "Al Data Scientist."

5. Automatic Generation of Semantic Layer

One of the primary barriers to adopting semantic-first architectures at enterprise scale is the



perceived cost and effort of manual curation. Traditional semantic layers and ontologies require
months of workshops, schema reviews, and domain expert involvement. This paper asserts that
such manual processes are no longer necessary. Modern LLMs, when combined with controlled
prompting, statistical inspection, and verification loops, can automatically construct and
continuously refine a high-fidelity Semantic Layer directly from raw databases.

The Terno architecture treats semantic generation as a first-class system capability, not a
one-time setup task. The Semantic Layer is generated, validated, and evolved through a
structured, multi-stage pipeline.

5.1 Stage 1: Automated Table Relevance Detection and Pruning

Enterprise databases contain numerous tables that are irrelevant for analytical querying,
including empty tables, intermediate ETL artefacts, copies, aggregates, system-generated logs,
and deprecated structures. Exposing these tables to an LLM introduces noise and degrades
accuracy.

Objective:
Identify and hide tables that do not contain meaningful or query-relevant data.

Mechanism (LLM Instructions):

e “Hide all tables that don 't have the data.”

o “Identify tables that appear to be system-generated, staging, temporary, sorted,
aggregated, or duplicates of other tables.”

e “List tables that should be excluded from natural language querying and provide a brief
reason.

Outcome:
Only semantically meaningful tables are retained in the Semantic Layer. All hidden tables
remain physically intact but are excluded from downstream reasoning and prompt context.

5.2 Stage 2: Automatic Generation of Table and Column Descriptions
and Canonical Names

Raw database schemas are rarely designed for natural language understanding. Table and column
names are often abbreviated, cryptic, or system-oriented. This stage converts physical identifiers
into business-aligned semantic representations.

Objective:
Generate clear descriptions and canonical, human-readable names for tables and columns.

Mechanism (LLM Instructions):

o “Go through 100 rows of each table and come up with a clear business description of



’

what this table represents.’
o “Suggest a better, business-logical name for each table.”
“For each column, generate a concise semantic description based on the observed data.’
® “Recommend improved column names that reflect their actual meaning in business
terms.”

i)

Outcome:
Each table and column is associated with:

e A natural-language description
e A canonical semantic name
e Business context suitable for direct LLM reasoning

These representations form the primary interface exposed to the LLM during query generation.

5.3 Stage 3: Logical Relationship Inference

In many enterprise databases, foreign key constraints are missing, incomplete, or unreliable.
Instead of relying solely on physical constraints, Terno infers relationships at the semantic level.

Objective:
Identify and describe the logical relationships between tables.

Mechanism (LLM Instructions):

e “Figure out the logical relationships between tables.”

e “Identify which columns can be used to join tables and explain the relationship in
business terms.”

e “Describe how entities in one table relate to entities in another.’

1

Outcome:

Relationships are stored as natural language join narratives, not rigid graph edges. These
descriptions guide SQL JOIN construction during query generation and reduce hallucinated or
invalid joins.

5.4 Stage 4: Ambiguity Detection and Schema Curation

Ambiguous table or column names (e.g., status, type, code) and overlapping entities significantly
increase the likelihood of incorrect queries.

Objective:
Detect ambiguity and curate the exposed schema.

Mechanism (LLM Instructions):

’

®  “Go through all the tables and list tables whose names or descriptions are ambiguous.’



e “Identify columns whose meaning is unclear or overloaded.”
o “For each ambiguous table or column, recommend whether it should be renamed,
hidden, or have its description updated.”

Outcome:
The Semantic Layer is curated to ensure:

e FEach exposed entity has a single, unambiguous meaning
e Redundant or misleading structures are hidden
e Renamed entities better match the user's language and intent

5.5 Stage 5: Continuous Validation and Self-Healing
Semantic layers degrade as schemas evolve. Terno treats semantics as living knowledge.
Mechanisms:

e Monitor query failures and correction loops.
e Detect schema drift and data distribution shifts.
e Re-run semantic generation selectively when anomalies appear.

Feedback Loop:

e Failed SQL — error analysis — semantic update — retry
e User corrections — Metastore updates — future prevention

This ensures the Semantic Layer improves over time without manual intervention.

5.6 Summary: Why Automation Matters
Automatic Semantic Layer generation:

Eliminates months of manual ontology engineering
Aligns schema representation with LLM reasoning
Enables scalable External Knowledge Injection
Maintains enterprise safety and reversibility

By transforming raw schemas into living semantic narratives, Terno operationalises what
benchmark winners implicitly rely on.

6. Conclusion: The Future is Semantic

The evolution of Text-to-SQL is a microcosm of the broader evolution of Artificial Intelligence.
We are moving from systems that require us to speak their language (code, rigid schemas,



graphs) to systems that understand ours (natural language, nuance, context).

The "Terno Way" demonstrates that achieving great accuracy is not about building a better graph.
It is about building a better bridge. By leveraging a Semantic Layer (Metastore), abstracting
complexity via Pseudo-Schemas (SQLShield), and employing Agentic Workflows that mimic
human reasoning, we can achieve accuracy rates that were previously thought impossible.

Crucially, this semantic architecture is no longer a manual, brittle artefact. Terno shows that the
Semantic Layer itself can be automatically generated and continuously refined. Through
LLM-driven reasoning, raw enterprise schemas are transformed into business-aligned narratives:
irrelevant tables are hidden, meaningful entities are described and renamed, logical relationships
are inferred, ambiguity is removed, and semantic understanding improves with every interaction.
What once required months of ontology engineering and domain workshops can now be
achieved programmatically, safely, and incrementally.

Traditional mechanisms, such as ER diagrams, Ontologies, and Entity-Relation graphs, are
artefacts of a human-centric past. They fail because they optimize for the eye, not the token.
LLMs understand language better than graphs. Therefore, the architecture of the future must be
built on words, descriptions, and narratives.

For the enterprise seeking to unlock the value of its data, the directive is therefore unambiguous.
Do not invest in tools that merely visualise your schema that freeze meaning in time. Invest
instead in systems that can automatically understand, narrate, and evolve your data.

Detailed Analysis of Supporting Research & Methodologies

Terno AI’s Architecture and the '""Metastore' Advantage

Terno AI’s approach centers on a semantic layer that enables "text searches based on meaning
and similarity".° This is fundamentally different from exact-match keyword systems. The
Metastore ° is the repository for this semantic intelligence. It stores "business knowledge" and
"automated insights" (e.g., popular products, seasonal trends).’ This allows the system to inject
data awareness into the prompt. For example, knowing that "sales peak in December" might help
the Al disambiguate a query about "holiday performance."

SQLShield: The Pseudo-Schema Innovation

The SQLShield component ° is crucial for both security and accuracy. It uses a Pseudo-Schema
mechanism. This involves "creating a pseudo-schema that keeps track of original table and
column names while exposing different 'public' names to the LLM".” This "Schema



Augmentation"

allows the system to present a clean, English-friendly schema to the Al
decoupling the messy physical reality from the generation process. The "translation" step °
ensures that the generated SQL is executable. This aligns with findings in Gen-SQL *, which

show that bridging NL and DB with pseudo-schemas improves efficiency.

Benchmark Validation: DAIL-SQL, DIN-SQL, and MAC-SQL

e DAIL-SQL '° dominates the Spider leaderboard by focusing on "formatting schema as

code/text." It validates the hypothesis that sow the schema is described textually matters

more than its graph topology. It uses "Schema Linking" '®

nl

to identify relevant columns, a

process heavily reliant on the "verbose descriptions" * found in semantic layers.

e DIN-SQL " introduces "Decomposed In-Context Learning." It breaks queries into
sub-tasks. This mirrors Terno's Agentic Workflow.'”> It proves that "reasoning"
(decomposition) beats "structure" (graph traversal) for complex queries.

e MAC-SQL “’ utilizes a multi-agent framework with "selector," "decomposer," and "refiner"
agents. This supports the argument for a "Memory Layer" and "Logical Relationships" built
through agent collaboration rather than static edges.

The "Memory Layer" and artefacts

Terno’s Artifact Store °

provides the "Memory Layer" requested in the prompt. It saves
"intermediate artefacts, such as datasets, machine learning models, code, graphs, and charts."
This allows the system to be stateful, a critical requirement for multi-turn accuracy that static

graph models lack.

Report Authored By:

Engineering & Research Team, Terno Al
Date: Jan 12, 2026

(This report is based on a comprehensive analysis of research data, including Terno Al
documentation ¢, SQLShield specifications °, and benchmark papers for Spider and BIRD.'?)
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